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Polymers Filled with Solid Particles 

V. E. ZGAEVSKY 
Institute of Chemical Physics, Chernogolovka, U.S.S. R. 

(Received July 20, 1976) 

A filled polymer is modelled by stiff cubic particles with parallel faces joined by poly- 
meric interlayers. The particle centres are located a t  the centre of the lattice of cubic sym- 
metry. Isotropy of such a body is provided by the assumption of “polycrystalline” structure 
of the model. 

Based on this model, elastic and viscoelastic properties of a composite body are calcu- 
lated. Discussion of the results and comparison with the experimental data are given. 
Efficiency of the possible ways of optimizing the mechanical properties of the filled system 
is evaluated, and the conditions for applicability of the temperature-time analogy to a 
composite body are analyzed taking into account the properties of a polymer-filler 
interface. 

Polymer filled with solid particles is a structurally inhomogeneous solid. 
Such a solid possesses two characteristic features : 

a) The ratio of moduli of components may vary within 3-5 orders of 
magnitude. 

b) The volume fraction of the fillers may reach 80 per cent. Due to these 
features the general methods for mathematical estimation of mechanical 
properties of such composite bodies are cumbersome and often ineffective. 

There is a need in less accurate, but simpler methods of calculation of 
properties of the composites. Such simple methods should provide some 
general analytical expressions suitable for finding more efficient ways for 
optimizing structural parameters the composites. 

Such methods are usually based on model representations of the com- 
posites. 

In the present paper elastic and viscoelastic properties of filled polymers 
are considered within the framework of a multiparticle model. The results 
obtained are discussed and compared with experimental data. The efficiency 
of possible ways for optimization of the mechanical properties of filled 
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I10 V. E.  ZGAEVSKY 

systems is also evaluated and the conditions for applicability of the tem- 
perature time analogy to the composites are analyzed. 

1 ELASTIC PROPERTIES 

1 .I Description of the model with ideal adhesion 

A filled system is modelled by a set of identical cubic rigid particles with the 
centres located at the noduses of cubic lattice (Figure 1). There are polymer 
interlayers of uniform thickness between the parallel faces of particles. The 
body obtained will be similar to a crystal with pairwise, but noncentral 
particle interaction. Potential energy of particle interaction should be equal 
to free energy of deformed pdymer interlayers. 

Transition to an isotropic body is made by using polycrystal structure of 
the model. This could be done by assuming that the space orientation of the 
vectors of an elementary lattice is, on average, equally probable. The 
calculations are carried out under the following assumptions: 

I )  The adhesion strength of the polymer-particle interface is larger than 

FIGURE 1 The crystal model of a filled polymer. 
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ELASTIC AND VISCOELASTIC PROPERTIES 111 

the cohesion strength of the polymer. 

strain. 
2) The strain of a filler particle can be neglected as compared to polymer 

3) Polymeric interlayers are not stressed in the initial condition. 
4) The deformation is isothermal and reversible. 
5) The stress (or strain) state of the body as a whole is simple (simple 

6) The strain state of an interlayer between two particles is uniform. 
Now the largest deviations of the model from a real body should be 

mentioned. First of all, the polymeric matrix in  the model is assumed to be 
discrete. This will affect the value of the Poisson’s ratio of the filled system. 
A large underestimation of this value as compared to a real filled system 
should be expected. A discrete character of the polymer matrix should 
further lead to incorrect results for dilute systems, since as the filler content 
approaches zero, the volume fraction of the polymer also approaches zero. 

The assumption that a polymeric interlayer between two particles is 
strained uniformly is not rigorous since the ideal adhesion and the tendency 
of the polymer to retain its volume during deformation will lead to a non- 
uniform strain of an interlayer. But this assumption permits the calculations 
to be carried out in the analytical form. Using this assumption one should 
expect values of the elastic characteristics of the composite to be under- 
estimated. The model can be modified to take into account the effect of the 
triaxial stress state of an interlayer. 

tension, simple sheer, etc. 

1.2 Free energy of a deformed polymeric interlayer 

Let us consider an arbitrary pair of the neighbouring particles and introduce 
a system of coordinates related to this pair: 

el = a unit vector directed along the line connected centres of the particles 

ez = a unit vector normal to e l ,  
P 3  = a unit vector chosen so that three vectors e l ,  P2 and P ,  form a right- 

Obviously, ei will depend on the cell number I and particles number in this 
cell s. 

Let us denote by x,, the coordinates of a point within the polymer in the 
initial state in  this coordinate system. 

When displacement of one particle relative to another takes place and 
this displacement is such that the faces of two cubic particles remain 
parallel to each other, the coordinates of a point of the interlayer under 
consideration will be : 

in the initial state, 

hand system. 
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I12 V. E. ZGAEVSKY 

where w,  is the displacement of the centre of the particle along the vector C,, 
cl is the thickness of the polymer interlayer in the initial state 
v is the Poisson’s ratio of the polymer. 
We have taken into acoount the assumption 6 above. Using ( I ) ,  we shall 

write the strain tensor of the polymer interlayer 

The density of free energy of the polymer interlayer can be written i n  
accordance with1 as 

f = p (4  + 1 - 2 v  4) 

Where p is shear modulus of the polymer 
u:k is the sum of squares of the strain tensor components 
u i  is the square of the sum of the diagonal components of the strain tensor. 

Substituting Eq. (2) into Eq. (3), we have 

P 
2d2 

f = - [2(1 4- v,w: + w: + w 3  (4) 

1.3 Elastic properties of filled polymer 

To calculate the density of free energy of the model at the given strain 
state c i K ,  it is necessary to sum the values of the energy of all interlayers in a 
elementary cell and to divide it by cell volume Uc. 

Then, we obtain 

I pWR2 + = - -  ____ Ei jEkn  A i j k n  (i:) 
U ,  ‘ 2d2 I‘S’ 

when W is the volume of a polymeric interlayer, 
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ELASTIC AND VISCOELASTIC PROPERTIES 113 

R is the distance between the centres of nearest particles in the initial 
state, 

Aijkn = (2v + 1)elieijelkelR + &eijel,, 

el,  is the projections of vector c, on the axis x, of the new coordinate 
system choosen arbitrary. 

Eq. (5) allows the tensor of elastic moduli of the model to be readily written 
in Voigt’s notations 

Turning to the isotropic polycrysta1,Z we shall find the elastic character- 
istics of the composite, namely Young’s modulus, E, shear modulus G, 
bulk modulus K and Poisson’s ratio u 

V 
g =  ~ 

5 f 4 v  
4213  

1 - + 1 / 3 ’  
where 4 is the volume fraction of filler particles and $I(#) = 

It is of interest to compare the theoretical formulae obtained with the 
experimental data. In  Figure 2 the experimental data for the dependence of 
the common logarithm of the ratio of the effective shear modulus of the 
composite to the modulus of the polymer versus volume fraction of filler are 
presented.3 The data are denoted by triangles-(polyisobutylene, glass beads) ; 
empty circles-(polyurethane, glass beads) and by shaded circles-(poly- 
urethane, crystal salt). Curve 3 shows a theoretical dependence of the shear 
modulus on the value of #I in accordance the Eq. (2) at v = 0.5. For com- 
parison, dashed lines show the Hashin-Shtrikman’s limits for rubber 
filled by particles of a crystalline material. Where the ratio of the shear 
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114 V. E. ZGAEVSKY 

modulus of the crystalline material to the modulus of latex is 2.105,4 (the 
ratio of the bulk moduli is about 10). Curve 1 shows the similar dependence 
obtained by Van der Poel. In spite of the relative simplicity of the model 
considered here, theoretical curve 3 lies between the lower limit by Hashin- 
Shtrikman and the experimental points. 

1.4 Case of triaxial strained model 

Disagreement between the theory and the experimental data will be much 
smaller if one takes into account a complex stress state of the interlayers 
caused by incompressibility the ideal adhesion at the interface. 

FIGURE 2 The dependence of common logarithm of the ratio of the effective shear 
modulus of the composite to the modulus of the polymer I’S. the volume fraction of filler. 

Lindsey5 gives Schapery’s calculation of the stress distribution in the 
polymeric interlayer between parallel surfaces of two disks under forces 
acting normal to the surfacer of the discs. These calculations were made 
under the assumption of small deformations. 

The interlayer is characterized by the Young’s modulus E, and Poisson’s 
ratio v. The ratio of the disk diameter D to the interlayer thickness cl was a. 

The dependence of normal stress 0, on the distance of a point from the 
disk centre is 
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ELASTIC AND VISCOELASTIC PROPERTIES 

V IO[.d3( 1 - 2v)l) 
I - -  t OAT) - - 

(1  + v)(l -27 { Io[Ud3(1 - 2v)] 
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where E is the relative displacement of the disk surfaces, I,[K] is the modified 
Bessel’s function of argument K. Now the value of $ in our model can be 
made to be connected with the value of a in Schapery’s calculation, namely 

Substituting Eq. (9) into Eq. (8), we obtain the dependence of 

gr(7) in terms of both $ and v. 
EOF 

By numerical integrating of the equation obtained with respect to T and 
then dividing the resulting surface area, we obtain the value of k, which is 
the ratio of the effective modulus of the interlayer to the modulus obtained 
under the assumption of uniform strain in the interlayer. 

The value of k now should be substituted as a coefficient into components 
in three upper lines of the matrix of Eq. (6). Turning as previously to the 
isotropic polycrystal we shall obtain for the shear modulus G of the filled 
polymer the following expression : 

Curve 2 in Figure 2 shows the dependence of the relative shear modulus of 
the filled polymer, which corresponds to Eq. (10). We can see that account 
for the triaxial stress state leads to a better agreement between the calculated 
curve and the experimental data. 

The value of k depends on both $ and v. At $ I 0,5, the dependence of 
k on v is weak. For example, at $ = 0,5, when v changes from 0,4 to 0,5, 
then k varies from 1,12 to  1,5. At larger volume fraction of the filler 
(C > 0,5) the dependence of k on v becomes stronger. At $ = 0,8, k changes 
from 1,56 to 7.55 when v changes from 0,4 to 0.5. 

Thus, the shear modulus of a particulate composite with polymer matrix 
can be changed within an order of magnitude by possible changing of the 
value of the Poisson’s ratio. 

1.5 Elastic properties of a filled polymer without adhesion 

Let us again choose the arrangement of the cubic particle centres at the 

between the matrix and the particles 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
9
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



1 I6 V.  E. ZGAEVSKY 

centre of the lattice with cubic symmetry. The particles are placed into a 
polymeric matrix, adhesion between particles and polymer being absent. 
During the deformation of the composite cavities will occur between the 
particles and the matrix. We shall consider the polymer to be incompressible. 
Calculations are carried out under the above assumptions, except for the 
first assumption. Furthermore of the deformation of an interlayer between 
particles the uniforming of will naturally be violated at the interfaces between 
the single interlayers. Neglecting of deformation non-uniformity in this case, 
when there is no adhesion, will not lead to significant mistake, especially 
at intermediate and high volume fraction of the filler. As previously, let us 
write down a free energy of the deformed polymeric interlayer at v = 0 .5  
in the system of Cartesian coordinates, where the axis x, is directed parallel 
to the cube edge, and x2 and x3 form with x, the right-hand system of 
vectors. 

Here the first index at the values of displacement w denotes the plane of the 
interlayer normal to the axis x i ,  and the second index shows the projection 
of this plane displacement on the axis x K .  Contrary to the previous case, the 
interactions take place here not only between the nearest particles and 
therefore in Eq. (11) not only the squares of wik is present, but also 
their products. Then, as previously, elastic moduli of the crystal are calculated 
and the transition to the isotropic material is made, using the same idea 
about the polycrystalline composite. We obtain 

G = p(1- 4) 
E = 2p(1 - 4) 
K =  3 p(I - 4) 
o = o  

(12) 

As one can see from this formulae, the elastic characteristics of such material 
decreases linearly with the volume fraction of the filler. At 4 = 0, the shear 
modulus is equal to the modulus of an unfilled polymer, though the Young’s 
modulus and the Poisson’s ratio differ from their values for the polymer. 
This is a result of the violation the continuity caused by consideration of 
six independent plates of polymer in the elementary cell. 

Comparison of the theory and experiment617 is given in Figure 3 where 
the relative Young’s modulus is shown with respect to the volume fraction 
of the filler (polyvinylchloride-glass beads, shown by open circles; poly- 
urethane-NaCL, shown by squares). The agreement between the theory and 
experiment is good enough. 

Comparing Eqs. (10) and (12), one can get the limits of changes of the 
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ELASTIC AND VISCOELASTIC PROPERTIES 117 

elastic characteristics of filled system when the adhesion changes. For the 
volume fraction of filler equal to 70-80 per cent the ratio of the shear 
modulus of a filled polymer with the ideal adhesion to the shear modulus of 
the same system with no adhesion exceeds an order of magnitude. 

e -  
k\ 

45 
Lu 

2 VlSCO E LASTlC PRO PERTIES 

0 0 0 

- 
- 
- 
- 
- 0 - 

1 I 1 I I I 

Experimental data on the frequency dependenci: of mechanical character- 
istics of the composite contain the complete information on the physical- 
chemical structure of the material, which in principle permits its ultimate 
mechanical properties to be characterized. To obtain this information from 
the experimental results, it is necessary to have some theoretical description 

0 t 

of such behaviour. The necessity of such description is evident from the 
problem of obtaining the experimental data over the wide range of fre- 
quences. It is known, that in the case of pure polymers the temperature- 
time superposition (Tts) is commonly used for this purpose. Its validity is 
well established theoretically and experimentally.8 A widespread application 
of this principle to filled polymers9 needs additional proof especially as 
direct experimental evidence exists.10 
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118 V. E. ZGAEVSKY 

Furthermore, in a paper11 on the basis of an analysis of results of dynamic 
testing of filled polymers over the frequency range of 0.004 to 0.4 hertz, 
the concentration-time (Cts) and concentration-temperature (CTS) are 
superpositions put forward. Analysis of possible causes of validity of these 
principles seems to be of some interest. 

Here we intend to present a model description of viscoelastic properties 
of a filled polymer, in order to discuss characteristic features of relaxation 
mechanisms which can satisfy or not satisfy to various superposition 
principles. 

Three modifications of the model considered above are discussed 
1 )  a model with the ideal adhesion of the polymer to the filler; 
2) a model with the ideal adhesion and the polymer with properties near 

3) a model with poor adhesion at the surface offiller particles. 
the particle surface which are different from those in bulk; 

2.1 Filled polymer with the ideal adhesion 

In addition to the assumptions taken above a small amplitude of the deforma- 
tion involved should be expected. We shall consider only such deforma- 
tion of the composite, that the wave length is much larger than linear sizes 
of the composite sample. We shall describe the behaviour of a polymeric 
material by a linear theory of viscoelasticity and assume the material to be 
incompressible. Then calculations analogous to those delivered i n  paragraphs 
I .2 and I .3, lead to expression for the complex shear modulus d of the filled 
polymer, in the case of small periodic deformation : 

G = 1,2$(4)+ 

where is the complex shear modulus of the polymer. Eq. (13) is directly 
obtained from Eq. (7) by the common rule, substituting complex moduli for 
elastic moduli at v=0.5. 

In accordance to Eq. ( I  3), the effective complex modulus of the composite 
is given as a product of a value, depending only on the volume fraction of the 
filler, and the complex modulus of the pure polymer. This immediately leads 
to the conclusion, that tangent of an angle of the mechanical losses, tan 6 of the 
composite with the ideal adhesion will be exactly equal to the tangent of the 
pure polymer, t ,  at any degree of filling, 4. Note that this conclusion is reached 
without taking into account the peculiarity of the behaviour of the matrix- 
particle interface zones. 

The value of logarithm of the real part of the modulus e will increase with 
4 by the value log [ l ,  2 $(4)]. If for a pure polymer the principle of TtS 
is valid and the shift factor on frequency scale is equal to a T ,  then substituting 
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ELASTIC AND VISCOELASTIC PROPERTIES 1 I9 

$(aTw) into Eq. (13), we shall see, that the sams value ar  will also be 
a shift factor for the composite. 

The shift along the logarithm modulus axis unlike that for a pure polymer 

log -, where po and p are the densities of the polymer at To and TI  

respectively, will correspond to value 

TOP0 
TP 

TOP0 
TP 

log ~ -t 2,3(+ - +z'3 - + l i Z  - 2)(a,, - q ) ( T -  TO) (14) 

This is associated with different thermal expansion coefficients of the polymer, 
aP, and the filler, af .  If u p  - lo4 ]/degree, + - lo-.' and ( T -  To) z IOO'C, 
then at the case of the crystalline filler, the terms of the Eq. (14) may turn 
to be of the same order. In so far as w and I$, as well as 4 and Tin the expression 
Eq. (13) do not occur in multiplicative combinations, there is no possibility in 
the case given to explain the principles of CtS and CTS suggested in Ref. 11. 
These authors suppose that the validity of the CtS and CTS principles is 
connected with the peculiar state of the polymer in some layer near the interface 
polymer-filler. We shall analyze this possibility in the next section. 

2.2 A model taking account of t h e  s t r u c t u r e  of polymer in t h e  

The main ideas about the structure of matrix-particle interface zones connect 
with the fact, that at  some distance from the surface of the filler particles the 
conformations of macromolecules differ from those in the bulk of polymer. 
This results in  different mechanical characteristics of polymer near the 
surface and in bulk.l2 Let us assume the existence of the interface zone of 
a certain thickness and the properties of the material within the whole zone 
to be constant. Now a polymeric interlayer between particles will be in- 
homogeneous and be part of three layers structure. Let us assume deforma- 
tion in each layer to be uniform. Polymer at the surface of a filler particle 
i n  zone of the thickness d, will be characterized by modulus bl and in the 
rest of the interlayer (on the thickness d,)-by modulus C2. The obvious 
procedure of calculations gives on effective modulus of the filled polymer at 
the presence of the interface zone: 

interface zones  

where 
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120 V. E. ZGAEVSKY 

Now let us note that the geometrical considerations lead to the critical value 
such that at 4 = 4c the value offcan be equal to 1/2. It means that the 

whole polymer matrix consists of the material with the shear modulus G I .  
Obviously 

l&= ( I  + ;)- 
If changes in  the properties of the polymer layer of the particle surface is 
connected only with effect of the surface itself, the value dl should be 
about 100A.13914 If the properties of the surface layer are connected with 
contraction of thermal or chemical nature, then d l  seems to be about Ip. 
And finally, specially created layers of arbitrary thickness d ,  are possible. 
If dl % 100 A, then for particle diameter of about lop we have 6, > 90 per 
cent and this case it may be assumed that f = 0 up to 4 I 90 per cent and 
hence viscoelastic properties of the filled polymer will depend only on the 
properties of polymer in bulk. 

If dl w lp, then 4, = 7 5  per cent and at I$ 2 75 per cent the properties 
of the filled system will depend only on the properties of polymer in the 
surface layer. 

Let us consider the case when I$ < 4,. Then we can assume ,f < 1 in 

to  be a finite quantity. Expending the value of 6 Eq. (15) and ~ 

P 2  - czl  

f l l  
(Eq. (15) into the- series in small f and keeping only the first terms of 
the expansion and representing the complex moduli as i; = p‘ - ip” we 
obtain the following expressions for real G‘ and imaginary G” parts of the 
effection modulus 

G’ = 1,2$(I$)L[l - 2(a - Wf.1 

where G” = 1,2$(Q)p;[ 1 - 2 (a + s ) f ]  

and t denotes tangent of an angle of the mechanical losses of the polymer in 
bulk. Directly from Eq. (l7), we find the tangent of an angle of the mechanical 
losses, tan 6 of the filled polymer. 

1 
A possible shift of maximum of the value of tan 6 in accordance with 
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ELASTIC A N D  VISCOELASTIC PROPERTIES 121 

Eq. (18) is connected not with 4, but with and the direction of the shift may 
change its sign depending on the sign of b. Since in Eq. (17) 4 does not enter 
into the combination with frequency, the CtS principle again cannot be 
explained. Fulfilment of the CtS principle for the filled system in accordance 
to Eq. (17) should mean validity of the following equation. 

p;(4[1 - 2 ( 4 w )  - b(wMw>lfl = p;(w"J (19) 

at any values of frequency w. This expression is not obviously at all and it 
may be expected to be valid in some particular cases only. 

Certainly in the general case, the shift factor u,+ on the frequency scale 
cannot be meaning full for our model, but it is possible to calculate the 
dependence of G I  on w having the value of ,ill and f i2 Eq. (17)). 

2.3 A model with imperfect adhesion at the surface of filler 

This case is of interest since there appears an additional relaxation mechanism 
connected with the friction between the particle surface and the polymeric 
matrix. 

Making use of the above model with the ideal adhesion, we shall write 

down the balance of the forces exerted on the particle (k) in the case of 
periodic deformation 

particles 

I ,  

/ I  / 

y us- us + + s s ' u s ' =  0 (20) ( : : ) 11' I' 

where y is the coefficient of friction between free particle surface and the 

polymer, is and Us are the rate of the particle numbers s in the cell number I 
/ / 

I I 

and the rate of the polymer surface around the particle 
/ I '  

Hence the force matrices +ss' should be as 
11' 

/ I '  

+SS' = - 
ii' 

- ( 3 e l i e l i ,  + e2ie2i,  + e3ies i r )  

li sfi 
+ss = - ?; ( 3 e l l e l , ,  + e21e21p i- e3ie3 , , )  

where S is the sectional area of the part of polymeric interlayer with ideal 
adhesion. Value S will be now a variable and at zero adhesion throughout 
the whole particle surface, S should be equal to zero. The value of y by 
definition is proportional to the particle surface S'(y = y'S') where adhesion 

I I '  4 7 '  
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I22 V. E. ZGAEVSKY 

is equal to zero. The sum of the values of S and S’ should naturally be equal 

to surface of the whole particle. By solving Eq. (20), us can be found for 

given value of Us.  From known us a mean stress can be written which is 

induced by a particular movement of the particles. The latter permits 
viscoelastic moduli of the model to be calculated and offer transition to the 
polycrystal situation and an expression for the shear modulus of a filled 
polymer. Omitting somewhat cumbersome calculations, let us write down the 
final result 

I 

I I i 

i i 

G” - ~K+>p’(w)[l ,  2t + Q”(wl, t ) ]  

S 
L2 

where cc = - IS  the fraction of particle surface with ideal adhesion, 

Q’(wl, t )  and Q”(wl. t )  are analytical functions of reduced dimensionless 
frequency w I  and tangent of an angle of the mechanical losses of polymer f 

(22) 
2y’(l - d )  w d  

cc . p‘(w) 
-__ W I  = 

Note that at w ,  = 0, functions Q‘(wl, t )  and Q”(w,,  t )  are equal to zero. 
In the present paper we shall not need explicit forms of these functions, 
and so we shall not give them here. Also we note the Eq. (21) describe VISCO- 

elastic behaviour of the model when deformation of the part of the polymeric 
interlayer only is taken into account, namely of the part which is joined with 
the filler particles. 

The formal account for viscoelastic properties of the whole polymeric 
matrix can be made by addition of complex moduli of the filled polymer into 
the right part of Eq. (21) at zero value of the adhesion and y = 0. 

Viscoelastic properties of the polymeric matrix in the filled system at zero 
adhesion and y = 0 can be obtained substituting the elastic moduli in 
Eq. (12) by the complex ones. 

(23) 
Taking the sum of the values given by Eq. (21) and Eq. (23), we finally 
obtain 

ecw, = (1 - $)fi(4 

( 24) 

It follows from Eq. (24) that at 4 = 0 the effective moduli become equal 
to the moduli of a polymer matrix (C(0) = 0) ,  while at $ -+ I the moduli 
approach infinity due to assumption of absolute rigidity of the particles. In 
the case when y’ -> 0, we have w --f 0,  as well as the second terms in the 

C’ 

G” 
.$(+>p’(w>[l. 2 + Q’(wi, t ) ]  + (1 -- $ ) p ’ ( ~ )  

a$($)p’(w)[l, 2t -I- Q ” ( ~ I ,  t ) ]  + ( 1  - $)p”(w) 
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square brackets of the Eq. (24) approaches to zero. Here the effective 
moduli are expressed as a product of a certain value, depending on 4 only, 
and the viscoelastic moduli of a matrix. Analysis of this case was considered 
above. In the case when y # 0, there appears an additional relaxation 
mechanism which leads to appearance of the dimensionless frequency w I ,  
along with the main frequency w.  

I n  accordance with the equation (22) at fixed values of a and y’,  the 
frequency w I  will be proportional to wd/p ’ (w)  and thus it is not explicitly 
expressed in terms of 4 ,  though with increasing of 4 at a fixed size of the 
particles the value of d should decrease, and therefore w I  should decrease, 
and hence values of both Q’(wl, t )  and Q”(wl,  1 )  should also decrease. The 
latter may lead to the fact that maximum of the value of tan 6 for the filled 
polymer will be shifted towards low frequences with increasing of 4 .  Maxi- 
mum of the value of tan 6 for the filled polymer may also decrease, if 
dissipation energy of the filled polymer is mainly associated with y’. This 
follows from the fact that with increasing 4 both Q’ and Q” decrease, and 
the values in the square brackets the Eq. (24) will decrease. Frequency 
dependence of w I  is mainly associated with dependence p’(w). At low 
frequences, when p’(w) is practically independent of w,  w I  will be pro- 
portional to w,  but in the region of intermediate frequences, decrease of w,  

may be expected due to a strong growth of p’(w). The square bracket of 
the expression of the actual part of the shear modulus (24) which affects the 
value of G’ deviation from p will behave itself in the analogous way. 

A more detailed analysis of behaviour of G’ and G” can be carried out 
when the characteristics of the polymer and the conditions of filling are 
known. 

However, it follows from the above considerations that again we cannot 
confirm the validity of the TtS, TCS and CtS principles for the filled system, 
though for each particular case the dependence of G’ and tan 6 on w for the 
filled system can be calculated from the known properties of the pdymer 
and values of the above mentioned parameters of filling ( a ,  4,  y’). 

CONCLUSIONS 

1) The shear modulus of a particulate composite with polymer matrix 
can be changed within an order of magnitude by possible changing of the 
value of the Poisson’s ratio. 

2) At volume fraction 01’ the filler equal to 70-80 per cent the range of 
variation of the shear modulus of a composite can be more than one order 
of magnitude if there is a change in adhesion between the matrix and the 
particles. 
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3) In the case of the ideal adhesion and without consideration of the 
special structural state of the polymer within the interface zone the TtS 
principle should be valid. The value of the shift factor on the frequency 
scale is equal to the corresponding value for the polymer matrix. The shift 
factor for the shear modulus in the direction of the logarithm modulus axis 
depends on the volume fraction of the filler. This is determined by the 
difference in the value of the coefficient of thermal expansion of the matrix 
and the filler. 

4) When the adhesion is imperfect or there exist an interface zone with 
special properties, the model considered does not confirm the general 
validity of TtS principle. 
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